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1. Introduction - —- ' *
Let %, ..., %, be k (> 2) independent populations where %, has 1

B

the associated distribution function F(x, 8,) and density f(x, 8,) E

with the unknown parameter 6, belonging to an interval (a, b) of the

real line. Our goal is to select a subset (preferably small'in size)

of the k populations LITIRRRRS that will contain the best (suitably
defined) among them.

In practice, it sometimes happens that the actual values of the
random variables can only be observed under great cost, or not at all,

while their ordering is readily observable. This occurs for instance

e N

in 11fe-testing when one only observes the order in which the parts
under investigation fail without befng able to record the actual time
of failure. In problems of this type, one may desire to investigate
decision rules based on ranks.

In dealing with the goal specified above, Gupta and McDorald
(1970) studied three classes of subset selection rules based on ranks
for selecting a subset containing the best among k populations when
the underlying distributions are unknown. When the form of the under-
lying distribution 1s known but the valves of the parsmeters o,,
f=1, .., k, are unknown, Gupta, Nuang and Nagel (1979) studied some
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Tocally optimal subset selection rules based on ranks. The latter

study leads to the conclusion that the class of subset selection rules

R3 of Gupta and McDonald (1970) is locally optimal in some sense.

Huang and Panchapakesan (1982) also studied the problem of deriving

some subset selection rules, based on ranks, which are locally optimal

in the sense that the rules have the property of strong monotonicity.

A1l the studies mentioned above only considered the situation where
v the ranks are completely observed. -
; We now consider a problem as follows: Suppose that there are k
| different devices and we want to select the best among them. From

each kind of device, say W;s N prototypes are taken for experiment

and the N = kn prototypes are simultaneously put on a life test.

Due to design reasoning or cost consideration, the experiment termi-

nates as soon as the first r failures among the N devices are abserved ‘

for some predetermined value r, where 1 < r < N. Based on these r \
observations, we want to ascertain which device is associated with the \
largest (expected) 1ifetime. Since we are only concerned with the

first r failures, we call this censoring scheme as a joint type II

censoring.

In this paper, we are interested in deriving subset selection

rules which satisfy the basic P*-condition and locally maximize the \
probability of a correct selection among all invariant subset

selectibn rules based on the ranks under the joint type Il censoring.
We assume that the functional form of the density function f(xso) ts

known but the value of the parameter 0 §s unknown. In Section 2,
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the problem is formulated. Some properties related to the ranks under ‘}
the joint type 1l censoring are also given. Following the earlier
setup of Gupta, Huanq and Nagel (1979), a locally optimal subset
selection rule R1 is derived in Section 3. The property of local
monotonicity related to the rule R1 is also discussed in Section 4.
Finally, a comparison between the subset selection rule R1 and that

of Huang and Panchapakesan (1982) is discussed in Section 5.

2. Formulation of the Problem

Let w;, ..., w_be k (2 2) populations and Tet f(x, 8;) be the
density function associated with the population LA fori=1, ..., k.

Let 0[1] < see 5-°[k] be the ordered parameters of el. cees Oy of

course, the correct pairing of the ordered and unordered ai is unknown

e AP RPN T R

to us. The population associated with elkl is called the best popula-
tion. 1n case of a tie, one of the contenders is tagged and is called

the best. Let 2 = {8]9 = (0,, ..., 0,)} and Q) = {9 eqlo; ===+ = §,}.

i
15
I
r

Let 'xij’ J=1, .... n be independent observations from LL and let

Rij denote the rank of xij in the pooled sample of the N = kn

observations. The smallest observation has rank 1 and the largest
has rank N. Let Xy Soee S xy denote the ordered observations.
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Definition

2.1. A rank configuration is an N-tuple & =(8,, ..., &),
8; e{l, ..., k} where A, = j means that the ith smallest observation
in the pooled sample comes from -

Let L = {A} denote the set of ail rank configurations, For each
pelL, let Xy = {x = (Xgseeeaxy) exlél( = A}, where x = {x]x = (Xs...o%y)}

and p, denotes the rank configuration of x = (x]....,xN).

. Let r be a predetermined integer such that 1 < r < N. Under the

| joint type I1 censoring scheme, only the first r smallest observations

in the pooled sample of the N (xij’ =1, ..., ns 1 =1, ..., k)

are observed. That is, for the rank configuration éx = (Al' ceen A“),

only the subvector (Al’ cees Ar) is observable. For this preassigned

————

value r, let Cr be a function defined onlLsuch that for each

A= (Al’ cees AN)e L, Cr(é) = (Al’ cees Ar) = 5(r). Let L.* Cr(l.).

Then, L = {A(r)|AcL}. Hence, for each A(r)e L., max(0, r - (k-1)n)

r
£ le '(1}(53) < min(r, n ) for each { = 1, ..., k, and

15 ry=r. We call A(r) as a joint type 11 censored rank configura-
=]

tion.

e e e e

For each A(r)e L., define the set L(a(r)) ={ac Lic.(a) =a(r)}.
Let |A| denote the number of elements in the set A. Then,

"1
ﬂ-r-igl(n-q)

jL(a(r))} = 1
m=]
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0
where ] = 0. Also,
i=1

; IL(ate))] = NI/ (n 1)k
é(r eLr

Let D be the decision space consisting of all the 2k subsets of
the set {1, ..., k}. Any subset is denoted by d so that D =
{d]d [ {1, ..., k}}. A decision d is the selection of a subset of
the k populations. The fact that ied means that population LF is
included in the selected subset if decision d is made. Let s(é(r). d)
denote the probability that the decision d is made if the censored
rank configuration A(r) is observed. Let a‘(e(r)). i=1,...,k,denote the
individual selection probability of the k populations, where

a,(a(r)) = dgi 8(a(r), d), (2.1)

the summation being over all the subsets containing i.

Definition 2.2. A subset selection rule R based on the censored
ranks 1s a measurable mapping from L, into [0, ll* such that

R(A(r)) = (a,(a(r)), ..., oy (B(F))).

Let Pi(g) denote the probability of including the population w,
in the selected subset when ¢ = (9,, ..., 8)) are the true parameters.
That 13, Py(0) = Eglay(a(r))) where the expectation is over the set
L.. Any decision d that corresponds to the selection of the best

ke en ok
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population is called a correct selection (CS). The probability of a
correct selection is denoted by Pe(CSIR) when the subset selection

rule R is applied.
Let G denote the group of permutations g of the integers 1,..., k.

We write g{(1, ..., k) = (g1, ..., gk). Let h denote the inverse of ¢
and define g(el, v ek) = (em. cees ehk)‘

For each AeL, f(r)el ., let g and § be defined by Ja = (94, cer98y)
and ga(r) =(g8;» ..., 94,), respectively. Thus, both g and T are
induced from g. Let G = {g} and §- (.g':). It is easy to see that

Cr(Eé) = §(C,.(8)). Also, AcL(a(r)) iff gae L(GA(r)). Hence,
IL(a(r))| =|L(3a(r))] (2.2)

for each A(r)eL, and for each e G

Definition 2.3. A subset selection rule R on L, is invar{fant under

permutation 1f and only if (a,(3a(r)), ..., a,(3a(r))) = gla;(a(r)),
-vs @, (a(r))) for al) A(r)eL,, 96 and § induced from g.

Let f(x, 91) be the density function associated with population
wys with the parameter 6, belonging to some interval (a, b) of the
real line, where -= < a <b <= ‘Let @ = {0]8 = (6;, ..., 8, )},
fy = (8 enlol =ecosg.)andq = (9 cnlo, ?_OJ for all § ¢ 1).

Furthermore, let the density f(x, 8) have the following properties:
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Condition A:

[ (1) f(x, @) is absolutely continuous in ¢ for every Xx;

(i1) f{x, e)=53—f(x. 8) exists and is continuous in 6

for every x;

(111) ;120 I:- [f(x, 6)|dx = Ij; [f(x, 8p)ldx < =

holds for every 8y¢ (a, b).

Now, under the assumptions of Condition' A, our goal is to
derive an invariant subset selection rule R, based on the joint

type 11 censored ranks, such that

[ (1) ,faf Py (CSIR) = P+ where Pe (3, 1) is prespecified;

9%

(11) Pg(CS|R) s as large as possible for all 0 in a

nefghborhood of 80¢ %-

Note that for each 89 €%s Peo(cslk) will be interpreted as the

probability of selecting a specified population.
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3. A Locally Optimal Subset Selection Rule

For each 8 €Q, A(r) €L, et Po(A(r)) denote the probability

that the joint type II censored rank configuration A(r) is observed

under 8. Also, let PQ(Q). de L, denote the probability that the

complete rank configuration A is observed under §.

4 Then,
Lk *N X2 N
Po(8) =(nt) fo I oo I 'nl f(xj, 8, Jdx; =eo dxy. (3.1)
-~ -t -l - JS J
It is also clear that for each alr)elL,
P.(a(r)) = ) P_(A). (3.2)
e aeL(s(r)) &°

Let 85 = (95s -..» B8y) €@y, where g€ (a, b). By applying a

simple algebraic computation, Pe(é) can be written as follows:

k
rala) = (n)*[Aglog) + I (o - aghtylas s ) (3.3)

N 2N 1
where A;(8,) = J: L I_.. 321 fx;s 8g)dx - +dxy = Fr which s

independent of 00.

) L 2 1 9, x)d dx, (3.4)
Mg 9 0 = 1 [. L. !-. a1y 3:8g0 8> xddxyoeediy (3.
aye1

for each 1 = 1, ..., k, where x = (x;, ..., xy) and




9
f(x.,8.)-f(x.6,) j-1 N
i i’’o
q(§,3,87:8,x) = —I—1 n f(x,0,) 1 f(x .8, ) ;
0 8 - 6, msp M0 mejel M Ay :
0 N
Here, we define N =1, I =1 and [f(xj,ei) -f(x.,eo)ll(ei -eo) =0
j=1 j=N+1 J
if 0, = 8.

Let 8p€fy and et |Jo - 8,]) = max |6, - 0.].
0 % ~  ~0 1<i<k i 0

Thus, if @ = (el. cees ek) is in the neighborhood of 8o with 8; # 8
4 for all 1 = 1, ..., k, then, under the Condition A, following an

argument analogous to a theorem {page 71) of Hajek and Sidak (1967),

we have

- N
<20 Aj:‘i !

and

N
| NN J§1|sj(go)‘ <o
Y

foreachi=1, ..., k, where :

*N *2 N
Bj(go) = [’m I_.., eve I-m i’(xj,eo) mI-ll f(xm. Oo)dxl eve de' (3.6)
m

|
i
»
|

That is, there exists an € > 0 such that as 0 < ||Q - 9.0“ <€,
Ay (8, 8y» @) is approximately equai to A"'(Q, go) for each 1 = 1, ..., k.
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Lemma 3.1. Suppose that the density function f(x, 8) satisfies the

N
Condition A. For each 6, c(a, b), let v(eo) = 7 Bj(go) where
j=1

90 = (eo, ces eo) Q). Then V(eo) = 0 for all g, e(a, b).

Proof: Note that for each eo e(a, b),

N N *N *2 N
jzl Bj(8g) = jgl ~ I_,, I_w Flxgadg) T flxgs 8g)ky == dty
m#j

N 2 0N "
i IT; J_, e I_@ jzl f(xj,eo) mzl Flxpgs 8)dX -+ dXy
m# j

X

e JZ %mgl sy o] oty

dX
- 1
8 90

TR
- oo ﬂfx,edx "'dx ]
de.m-m - m=] m 1 N|6=00

where the last equality is obtained under Condition A.

Therefore V(0,) = 0 for all 8, e{a, b) since

N *2 N
one oo S.—l—
Iju I_m I-. le flxys 8) dX; dxy = jy which is independent of

8. This completes the proof of this lemma.
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Lemma _3.2. Let g e and let P,(9) = Ee[ai(g(r))] be the probability

of including population LA in the selected subset under @ by applying
an invariant subset selection rule R. Let G(i) ={g €G|gi=i}. Then,

k k
- n! ni
Pi(e) g(r)EL, A (Liaten + 2y W0 g 6 ay(atr))

where

W(a(r), 8, 84, G(i)) = - 8g)A;(8. 8 g8),

(o
éu(gm) geé(i) j)t:l h
h is the inverse of g ¢G(i) and 8g = (6g» «--» eo) Q-

Proof: This lemma can be verified by following an argument analogous

to that of Gupta, Huang and Nagel (1979, page 257). We omit the
detail here.

Lemma 3.3. Suppose that the density function f(x, 6) satisfies the
requirements of Condition A. Let G(i) = {geG|gi=1} | Then ,

k . )
g;£(1) jzl(ehj'eo)“j(é» 8) = (K -2)1(ke, - V)AY(A, 8)

‘ k
for each i = 1, ..., k, for each 8 €ft, 8, efty where U = le 8y and h
is the inverse of g ¢G(1) and § cL.

. ko, kN N
! Proof: First note that le A8, 8o) = ng 'El By(8y) * uz B,(8g) =0

A"

1

which is obtained from Lemma 3.1. WNow,
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8, . - 68,) At(a, 8,)
acky b Cni 7 %0 e %

= 9, A" (8, 84)
accli) 321 hy 3T =0
k *
- A* +A%(a,0,) I @
' J§1 j(é %) geé(i) hy = =T R0T e hi
iti
k

{ A*(A ) )[:k -2)! eé] + (k -1)!91A;(é,go)
s 3#1 m#t

"

k
(k -2)1(U -84) 521 A7(8,80) + (K -1)10,A7(8:80)

it
= (k -2)!(ke, -U)AT(A,80)

where the first and the last equalities are obtained due to the fact

k
that JZ A}(A.eo) = 0. This completes the proof of Lemma 3.3.
=1 -

Theorem 3. 1, Let 8 cQ be any point in the neighborhood of Qo eno.
Let Pi(g) = Egla;(a(r))) be the probability of including population
LF in the selected subset under § by applying an invariant subset

selection rule R. Then, under the condition A, for each 1 = 1,2,...,k,

: ro s gy {fi e LT (3.7)

where

T3a(r), 8y) = AS(a, -
1(a(r), 94) nﬂ—n’ru“{(rn 18, 85). (3.8)

|
\

et e e 2




— e

13

Proof: It is trivial that under the condition A, {A.(4,85,8)] < = 1

and |Af{(g.§_0)| <o forall =1, ..., k. It is also clear that .
_ * . = :

(84 -85)A;(8.84,90) = (84 -64) R;(8,85) if 85 = 85 Thus, we assume

that 8 # 8y for each § = 1, ..., k- Note that }18-8ol} = |]gg-g]! .

for all g€G. Then, by the assumption and (3.5), we can choose
*
€ > 0 so smll that as |{@ - goll <€, Ai(g. 8y 99) = Ai(é’ go) for

all geG and so (ehj -eo) Ai(g. 8p° g8) = (ehj -eo) Ai(é' go) for all .
geG where h is the fnverse of g. Thus, either min |6, -eol =0

N B

1<ick "

or 12';21( [6; -85l > 0, if [{a - goll < €, we have !"

k 5{

‘ sccli) sh (Ons ” 0lA;(8- g 90) i‘
| )
) QeG%i) iy Cn 250 &) (3.9) t

= (k -2)1(key -U)AT(2,0,)

MG AR, im0 e

where the last equality is due to Lemma 3.3. Then, by Lemma 3.2

and (3.9), we obtain
P, (6)
. npp* IL(a(r))| + 7121}5.. ) .
atrfe, LWL 1) e (hry) (401 ~UN (@8] oylac)

(ko, -V) .
- EQQ{E * —TOL-_I:-!-!. L{A(r Qd}Q(")) A;(Q'Qo)]m‘“(?))}

This completes the proof of Theorem 3.1.
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Now, define subset selection rule Rl as follows:

[ 1 if T3(A(r), 8) > c(9y);
ui(é(r)) = 1 D(Qo) if T;(é(r)o go) = C(Qo); (3.10)
[ 0 1f T(a(r). 8) < clgy)s

where the constants c(go) and p(8,), (0 5_p(go) < 1), depend on the
parameter eo. and can be determined by

Pa,(TH6(r).0) > cleg)} + log)Py (T3(a(r).gg) = clggh =P~ (3.11)

We then have the following theorem.

Theorem 3. 2.  Suppose that the density function f(x,0) satisfies

the Condition A. Then, the subset selection rule Rl maximizes
Pe(CSIR) in a neighborhood of 8 €9 2mong all invariant subset
selection rules, based on the joint type II censored ranks, satisfy-
ing inf P_(CS|R) = P»,
geny 2

Proof: Without loss of generality, we assume that L is the best
population. Then by Theorem 3.1 ., for any g g, in a neighborhood
of % €Qgs

Po(CSIR) = P, (8)

(ke -U)N!
g {1 * T TRter) )y taten).

k-1
Stnce ke, - U = le (o. - o") 2 0, then by Neyman-Pearson lemms, we

conclude this theorem.

[
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4. Local Monotonicity of the Subset Selection Rule Rl

Let R be a subset selection rule and Pi(g) be the associated
probability of including population Ll in the selected subset for
each i = 1,..., k, when 8 1s the true parameter.

Note that by definition of P1(g),

Pyle) = Eyla;(alr))] (4.1)

- p
ol [9e1§9(r)) g(g)] ay(alr))

where Pe(é) is defined in (3.1).

Let e* = (of,...,0%) €n. Under Condition A,

aPe(A)
—5%——- exists for each j = 1,...,k and
j gngt
aPy(a) aPQ(g) - )
1im - = = ¥ B_(684)x(nt)"=A.(a,0,)(n!)",
les-ggl 10 %3 le=e* % lo=gg w020 3=

"0,

where B_(9)), A;(2,8)) are defined in (3.6) and (3.5), respectively.
Therefore, we have

aP4(8) aP(e)
Wa " 301 gug¥w " 301 0=0
e - o (4.2)
k *
- (nl el tatrn),

e

pgs e TRL LN




s — - vm—a =

for each i = 1, ..., k

16

3P, (8) aPi(g)‘
IIQ’-QEII*O oy |eme* * %5 gugy
. k A%(a.8y)ay(alr))  (4.3)
(n!) Q(r)ZL,.[AC‘-(E(")) [ o]

v j#i.

Definition 4.1. A subset selection rule R is locally strongly

api(g)
monotone at point Qo eno if foreach i =1, ..., k, aei o8 >0

3P, (9)

and—ae—-—- <0 for all j # 1.
3 18=8,

The following lemmas are needed for deriving the locally strong

monotonfcity of the subset selectfon rule Rl.

Lemma 4. 1 Let geG and geG and geG are that induced from 9.

Then, for any 4 eL, A(r)e L., we have
L2 oy = A*
A% (38, 89) = AT(a, g)

Proof: From (3.5), we have

Aj(a, 8,) = ? B,(8,) ? 8,(8,)
R T
AJ-i gaj-gi
" -
. ng aj(go).g;'m, 8 .
(%) ;9!
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Now, we see that for each f = 1, ..., k, A’;(Q.go) depends on

4 only through whether AJ *= { or not for each j = 1,

«.os N, and
when a; # 1, then A;(Q,Qo) is independent of the value of ay-

Stmilarly, T3(a(r), 8p) depends on A(r) only through whether by =1

or not for each j = 1, ..., r, and when 8; # 1, then Tj(a(r), 8,)

is independent of the value of Aj. Thus, for the subset selection

rule R), a;(a(r)) depends on A(r) only through whether 4 = 1or
not for each j =1, ..., r.

Let ge6(i). Since g does not change the position of fndex {1,
therefore, for each A(r) eL., a,(Ta(r)) = a,(a(r)) where TT is

induced from g. Now, according to the value of as(a(r)), the set
. ' "r can be partitioned into three classes, say,
)

L, = 1}00) uLh(1) uL¥(o(g,)) where Li(8) = (a(r) eL o, (a(r)) = g}

|

1

o

forg=0,1o0r p(Qo). [
l

|

Lesma 4.2. et geG(i) and ;:E be the one induced from g. Then

VRSP

3(1-:.(6)) 'L:_(B) for each 8 = 0, 1 or pl8y). {

Proof: For each B, let alr)e L:(B). Then “i“(r” = 8 and sO
ni(g‘g(r)) = 8 since geG(1). Therefore I‘Q(r)eL:.(B). That s,
BL)en C ol Arso, Fr, =1 This, 1t h,‘.(s)[;z.,',(g) for

some 8, we then have ?r.,(" L, which is a contradiction. Therefore,

T (8);=2l(8) for each 8 < 0, 1 or o

%)-

BRI st b

SRR "..:0. m
p—

"‘r .~,i...r"".‘(ﬁ..").’ AR a3y
o’ S =
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[
Lemma 4.3 Foreachfixediandm}i,j#iandafj,wehave

38 gg)]ay(a(r))
“")tzl- (a)[ﬂ-(g(r)) i 90]“1

) n(8: 89)]a;(a(r))
a(r)e Ei(g) Echd(r)) m:= -0} 3(a(r)
= r

for each g = 0, 1 or olgg)-

Proof: Let geG(1) and satisfies that gm=j, 95 =m Then,

! ! (8. gg)|aq(alr))
atr)er Hs) l;me(r)) 3¢ 0]

" e : Ags(a8s Qof (by Lemma 4.1)
alr)e Ll(a) Eﬂl(é(r)) £

) i
=8 1 AS(32. 9) |
areLi(e) |& '-)(-A(r)) | ‘

-8 I B A, -o)*

-

=6 1 I . A !o)]
a(r)eF L i(g)| 2L @(r))

Y

\

| 1 L(Ttr)) *°
; a{rlct (8) | €

i

5

l

|

el I\ Astes g,)] (by Lesma 4.2)
e(rm;m[eu-(e(rn

This completes the proof of Lemma 4.3.
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The following corollary is a direct application of Lemma g, 3

Corollary 4.1. For each fixed f and m ¢ i, J # i, we have

2P, (8)

apy(8)
3

99, ¥

0=84

Theorem 4.9 Suppose that the density function f(x,0) satisfies

the Condition A. Then, the subset selection rule Rl is locally

strongly monotone at each 8, eQ,.

Proof: By Corollary 4.1, for eachm ¢ §, we have

() p Kk ap(e)
) k-1 ET)
m |o= =1 °J |e=e
R -0
L_&l_

.e) (a(
LR ié, 4(")£L [;u.&(rn Ajlargy L"' 4(r))
« (o)¥ I 'f A*(2.8,) o, (A(F))
K= 1 atree, [eufe(rn m J7=r=07t TS

énl)" .
S - s A .
-1 é(")gl-r [Q;L(i(r” ’(é 90)]0'(9(7‘))

1 3
- 35~ P ¢(9)

where the last second equal ity fs due to Lesme 3.1,

R L
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Therefore, it suffices to prove that z3-p(g) > 0 for
i 29
each Qoeno. Now,
I le(ale))(T5(alr), gy)
é(r)ch' AlrnITye =0
A = 1 A%(a, 0,)
a(rier AeL{g(r)) = =0
= I A4, ¢,)
oh 1 % (4.4)
®

N
-1 L s ey)

N
" B0 i aybog)]

N-1)! N
' 8.(6
(n1)*Y(n-1)1 J§1 3%’

‘0.

! since | 85(8g) = O which {s due to Lemma 3.1 under Conditfon A.

=1

Then, by (3. 13) and (4.4), we see that

»
MY
srikL, [;u.{e(m 18 9°’]°'(9"”‘°

ar.(e)
Therefore > 0.

t losg, =
Tocally strongly monotone at each g Ry

Hence, the subset selection rule .l is
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5. Remarks.

(1) Note that when r = N, that is, in the complete
rank configuration case, this locally optimal subset selection rule

Ry turns out to be the one studied by Gupta, Huang and Nagel (1979).
(2) This locally optimal subset selection rule Rlis basedon the weighted

1
rank sum Bj‘go) * G-I ‘IN_ T Io ui-1 (1-u)“‘30(u. f, 8p)du where

o(u, £, 0) = #(F"(u, 0), 6)/F(F 1(u, 0), 08). In general, ¢(u. f, 6)
depends on 6. However, it is independent of 6 if 6 is a location
parameter (see Gupta, Huang and Nagel (1979)). In this situation,

the value BJ(QO) is independent of ,. Therefore, the two constants
c(85) and p(g,), which are used to determine the rule R, are also S
! independent of 8 for each fixed p* value.

(3) Suppose that 6 > 0 is a scale parameter, that is, f(x, 6) =

6h(6(x - u)) for some function h(-). Let 875 0, > 0 such that ‘ *
.2 s ”1. TM". O(U. f. 92) L %0(“. f. el)- Tbenforel Bj(Qz) =

%lj(gl)for each j =1, ..., N, where 9, = (0,s ..., 8,) efly» _

121, 2. Inthis situation, for each fixed p* value, we have
clgy) = § c(9;) and o(g,) = pfs,).

Huang and Panchapakesan (1982) also derived a subset selection
rule, say R“,. based on the complete rank configurations, which can
be represented as follows: '

(117 A3a gg) > V(og) + 0

sgls) = {0 If ASla. 95) = Vieg) + 0 (5.1)

K 14 ’A",'(.. Bp) < V(og) + 0
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where D and p(0 < p < 1) are chosen so that

and V(ey) + D > 0.

The rule RHP is always locally strongly monotone provided the con-
stants D and p satisfying (5.2) exist. However, as pointed out
by themselves, it is possible that the D and p satisfying (5.2)

may not exist. In such a case, the rule R, selects the empty subset.
The following example. indicates that the rule RHP always selects the
empty subset when p* > %—

Example Let k (> 2) and n be positive integers and let

N = kn. Let f(x,8) be the logistic density f(x,0) = e"(*"®);

{1+ e'(x'e)lz. m<x<m, w< O <w, It {isclear that f(x,8)
satisfies the Condition A. Then by Lemma 3.1 , V(eo) = 0 for all
8, €9 Also, ¢(u, f, 6) = 2u - 1, which leads to equally spaced

scores and

BJ(QO) = '(F'%{')T - iL!‘ . (5.3)

Note that 31(90) + BN+1-J(§0) =0 for each j = 1, ..., N.
Therefore, for each 4= (8,5 ..., 4_\") €L, let .91 . (Ai. ceve A.I‘)
where A} ® Bypgg for each § = 1, .o N Then aler. oy (5.3)
and the definition of AT(a, 8g). we have A3(a, 8g) + A}4's 8) = 0

for all 8 e, 8 €8y, which taplies that Py (A%(a. 8) > O} < }

%
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for all 84 €0y Hence, for p* > %. there exist no D and

p (0 < p<1) such that (5.2) 1s satisfied.

However, for the subset selection rule Rl’ the corresponding
two constants c(go) and p(go) always exist when p* s(%u 1), and the
rule Rl is always locally strongly monotone which is guaranteed by

Theorem 4 1,
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